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4.1.1 Potentiels en thermodynamique

Analogie mécanique : comme la thermodynamique est une extension de
la mécanique, on cherche à déterminer des potentiels qui jouent en
thermodynamique un rôle analogue à celui du potentiel en mécanique.
L’équilibre s’obtient alors en minimisant le potentiel correspondant.

Energie interne : la fonction d’état énergie interne est une fonction des
variables d’état extensives entropie S et volume V . Les grandeurs
conjuguées obtenues par dérivation partielle de l’énergie interne par
rapport aux variables d’état sont la température T et la pression p.

Pratique : dans des situations physiques pratiques les grandeurs
mesurées, ou contrôlées, sont souvent des grandeurs intensives comme la
température T ou la pression p.

Potentiels thermodynamiques : on désire définir des fonctions de
variables d’états extensives ou intensives (e.g. S, V , p, T ) qui ont la
même dimension physique que l’énergie interne. Ces fonctions sont des
potentiels thermodynamiques si les dérivées partielles de ces fonctions par
rapport à leurs variables d’état sont égales aux grandeurs conjuguées au
signe près.
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4.2.1 Relation de Gibbs

Dérivée temporelle de l’énergie interne : U (S, V, {NA})

U̇ = T Ṡ − p V̇ +

r∑
A=1

µA ṄA (2.19)

Différentielles : dU = U̇ dt , dS = Ṡ dt et dNA = ṄA dt

Relation de Gibbs :

(4.1)

Equations d’état : grandeurs intensives : fonctions d’état

(4.2)
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4.2.1 Relation de Gibbs

Espace des états : espace abstrait - ici à 3 dimensions (U, S, V )

Energie interne : U (S, V ) est représentée par la surface grise

Température :

T (S, V ) =
∂U

∂S
(2.16)

est représentée par la dérivée de la
courbe à l’intersection de la surface
U (S, V ) et de la surface V = cste

Pression :

p (S, V ) = − ∂U

∂V
(2.17)

est représentée par l’opposé de la
dérivée de la courbe à l’intersection
de la surface U (S, V ) et de la
surface S = cste

U

V

S
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4.2.2 Relation d’Euler

Extensivité de l’énergie interne : λ sous-systèmes identiques

(4.3)

Dérivée : par rapport à λ (4.4)

Les grandeurs U , S, V et NA d’un sous-système sont indépendantes de λ

(4.5)

L’équation (4.5) doit être satisfaite pour tout λ : soit λ = 1

(4.6)
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4.2.2 Relation d’Euler

Relation aux dérivées partielles :

U =
∂U

∂S
S +

∂U

∂V
V +

r∑
A=1

∂U

∂NA
NA (4.6)

Grandeurs intensives conjuguées :

1 Température : T =
∂U

∂S
(2.16)

2 Pression : p = − ∂U

∂V
(2.17)

3 Potentiel chimique : µA =
∂U

∂NA
où A = 1, .., r (2.18)

Relation d’Euler :

(4.7)
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4.2.3 Relation de Gibbs-Duhem

Relation d’Euler :

U = T S − p V +

r∑
A=1

µA NA (4.7)

Variation infinitésimale de la relation d’Euler :

(4.8)

Relation de Gibbs :

dU = T dS − p dV +
r∑

A=1

µA dNA (4.1)

Relation de Gibbs-Duhem : différence entre (4.8) et (4.1)

(4.9)
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4.3.1 Fonction d’état d’une variable

Transformation de Legendre : les transformations mathématiques qui
permettent de passer d’un potentiel thermodynamique à un autre
s’appellent les transformations de Legendre.

Transformée de Legendre : un potentiel thermodynamique est la
transformée de Legendre d’un autre car il est le résultat d’une
transformation de Legendre.

Démarche : on prend une fonction d’état quelconque à une variable
extensive et on effectue une transformation de Legendre pour déterminer
sa transformée de Legendre qui est une fonction d’état de la variable
intensive conjuguée. On généralise ensuite ce résultat à une fonction
d’état de plusieures variables extensives qui correspond à un potentiel
thermodynamique.

Fonction d’état d’une variable extensive : F (X) strictement
monotone et dérivable (bijective et inversible)

Grandeur intensive conjuguée :

(4.10)
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4.3.1 Fonction d’état d’une variable

Dérivée : la fonction Y (X) est
la pente de la tangente de la
fonction d’état F (X) au point
X. La tangente intersecte
l’ordonnée à l’origine au point G.

(4.11)

Y

X

F

G

La fonction d’état F (X) est une courbe déterminée par un ensemble de
points (X,F ). La tangente de pente Y (X) à cette courbe en un point X
est donc déterminée par un couple de valeurs (Y,G).

Transformée de Legendre : inversion de (4.11)

(4.12)

où X (Y ) est l’inverse de Y (X). La fonction d’état G (Y ) de la variable
intensive Y est la transformée de Legendre de la fonction d’état F (X)
par rapport à la variable d’état extensive X.

Information conservée : la transformation de Legendre est bijective.
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4.3.2 Fonction d’état de plusieurs variables

Fonction d’état de plusieurs variables extensives : F (X0, X1, .., Xn)

Grandeur intensive conjuguée : à la variable extensive Xi

(4.13)

Dérivée partielle : la fonction Yi (X0, X1, .., Xn) est la pente de la
tangente de la fonction d’état F (X0, X1, .., Xn) au point Xi dans le
plan où les autres variables d’état sont constantes. La tangente intersecte
l’axe des ordonnées au point G.

(4.14)

Transformée de Legendre : inversion de (4.14)

(4.15)

où Xi (X0, X1, .., Yi, .., Xn) est l’inverse de Yi (X0, X1, .., Xn).
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4.3.2 Fonction d’état de plusieurs variables

Transformée de Legendre :

G (X0, X1, .., Yi, .., Xn) = F
(
X0, X1, .., Xi (X0, X1, .., Yi, .., Xn) , .., Xn

)
− Yi Xi (X0, X1, .., Yi, .., Xn) (4.15)

La fonction d’état G (X0, X1, .., Yi, .., Xn) est la transformée de
Legendre de la fonction d’état F (X0, X1, .., Xn) par rapport à la variable
d’état extensive Xi.

Dérivées partielles permières : de F et G

∂F

∂Xi
= Yi (4.13)

(4.16)

Dérivées partielles secondes : de F et G

(4.17)
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4.3.2 Fonction d’état de plusieurs variables

La courbure d’une fonction par rapport à l’une de ses variables est
donnée par sa dérivée seconde par rapport à cette variable.

Courbure : (4.17)

(4.18)

La courbure de la fonction d’état G par rapport à sa variable intensive Yi

est l’opposé de l’inverse de la courbure de la fonction d’état F par
rapport à sa variable extensive Xi.

Transformée de Legendre : de F par rapport à Xi

(4.19)

Transformée de Legendre : de F par rapport à (X0, X1, .., Xn)

(4.20)
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4.4.1 Energie interne

Potentiel thermodynamique : toute fonction d’état obtenue par
transformation de Legendre de U (S, V, {NA}) est un potentiel
thermodynamique.

1 Energie interne : U (S, V, {NA})
2 Energie libre : F (T, V, {NA})
3 Enthalpie : H (S, p, {NA})
4 Energie libre de Gibbs : G (T, p, {NA})

L’énergie interne U (S, V, {NA}) est un potentiel thermodynamique
puisqu’elle peut être obtenue par deux transformations de Legendre
successives à partir d’elle-même.

Energie interne : relation d’Euler

U = T S − p V +

r∑
A=1

µA NA (4.7)

Différentielle de l’énergie interne : relation de Gibbs

dU = T dS − p dV +
r∑

A=1

µA dNA (4.1)
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4.4.1 Energie interne

Différentielle de l’énergie interne :

dU = T dS − p dV +

r∑
A=1

µA dNA (4.1)

Fonctions d’état conjuguées aux variables d’état : S, V, {NA}

1 Température :

T (S, V, {NA}) =
∂U (S, V, {NA})

∂S
(2.16)

2 Pression :

p (S, V, {NA}) = − ∂U (S, V, {NA})
∂V

(2.17)

3 Potentiel chimique : substance A

µA (S, V, {NA}) =
∂U (S, V, {NA})

∂NA
(2.18)
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4.4.2 Energie libre

Energie libre : l’énergie libre F (T, V, {NA}) est la transformée de
Legendre de l’énergie interne U (S, V, {NA}) par rapport à l’entropie S :

(4.21)

Energie libre : (4.7) dans (4.21)

(4.22)

Différentielle de l’énergie libre : (4.22)

(4.28)

Variation infinitésimale de l’énergie libre : (4.21)

(4.23)

Différentielle de l’énergie libre : (4.1) dans (4.23)

(4.24)
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4.4.2 Energie libre

Différentielle de l’énergie libre :

dF = −S dT − p dV +

r∑
A=1

µA dNA (4.24)

Fonctions d’état conjuguées aux variables d’état : T, V, {NA}

1 Entropie :

(4.24)

2 Pression :

(4.25)

3 Potentiel chimique : substance A

(4.26)
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4.4.3 Enthalpie

Enthalpie : l’enthalpie H (S, p, {NA}) est la transformée de Legendre de
l’énergie interne U (S, V, {NA}) par rapport au volume V :

(4.29)

Enthalpie : (4.7) dans (4.29)

(4.30)

Différentielle de l’enthalpie :

(4.36)

Variation infinitésimale de l’enthalpie : (4.29)

(4.31)

Différentielle de l’enthalpie : (4.1) dans (4.31)

(4.32)
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4.4.3 Enthalpie

Différentielle de l’enthalpie :

dH = T dS + V dp+
r∑

A=1

µA dNA (4.32)

Fonctions d’état conjuguées aux variables d’état : S, p, {NA}

1 Température :

(4.33)

2 Volume :

(4.34)

3 Potentiel chimique : substance A

(4.35)
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4.4.4 Energie libre de Gibbs

Energie libre de Gibbs : l’énergie lib. de Gibbs G (T, p, {NA}) est la
transf. de Legendre de l’énergie int. U (S, V, {NA}) par rap. à S et V :

(4.37)

Energie libre de Gibbs : (4.7) dans (4.37)

(4.38)

Variation infinitésimale de l’énergie libre de Gibbs : (4.38)

(4.44)

Variation infinitésimale de l’énergie libre de Gibbs : (4.37)

(4.39)

Différentielle de l’énergie libre de Gibbs : (4.1) dans (4.38)

(4.40)
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4.4.4 Energie libre de Gibbs

Différentielle de l’énergie libre de Gibbs :

dG = −S dT + V dp+
r∑

A=1

µA dNA (4.40)

Fonctions d’état conjuguées aux variables d’état : T, p, {NA}

1 Entropie :

(4.41)

2 Volume :

(4.42)

3 Potentiel chimique : substance A

(4.43)
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4.5.1 Approche vers l’équilibre - système et réservoir

Système : on caractérise l’approche vers un état d’équilibre d’un système
fermé formé de deux sous-systèmes simples 1 et 2 séparés par une paroi
et couplés à un très grand système simple appelé réservoir ou bain.

Réservoir : le réservoir est caractérisé par une ou plusieurs variables
intensives constantes.

Equilibre : chaque sous-système est en tout temps en équilibre partiel
avec le réservoir. L’équilibre partiel est caractérisé par une ou plusieurs
variables intensives constantes : celles qui caractérisent le réservoir.

Univers : constitué du système formé des deux sous-systèmes et du
réservoir est un système isolé.

Extensivité des variables extensives :

(4.45)

Extensivité des potentiels thermodynamiques :

(4.46)
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4.5.2 Minimum de l’énergie libre

Réservoir de chaleur

Text = cste

Système : gaz homogène

1 Fermé : N = N1 +N2 = cste ainsi IC = 0

2 Rigide : V = V1 + V2 = cste ainsi PW = 0

3 Diatherme : IQ ̸= 0

Réservoir de chaleur : bain thermique

1 Température constante : T ext = cste

Paroi : entre les sous-systèmes 1 et 2

1 Imperméable : N1 = cste et N2 = cste

2 Mobile : V1 ̸= cste et V2 ̸= cste
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4.5.2 Minimum de l’énergie libre

Equilibre partiel : équilibre thermique

(4.47)

Dérivée temporelle de l’énergie libre : (4.21) et (4.47) donne (4.48)

Ḟ (T, V1, V2) = U̇
(
S1 (T, V1) , S2 (T, V2) , V1, V2

)
− T Ṡ (T, V1, V2)

Dérivée temporelle de l’énergie libre : écriture allégée

(4.49)

Premier principe : avec PW = IC = 0

U̇ = IQ (1.45)

Deuxième principe : puissance dissipée

(2.29)

Dérivée temporelle de l’énergie libre : (1.45) et (2.29) dans (4.47)

(4.50)
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4.5.2 Minimum de l’énergie libre

Réservoir de chaleur

Text = cste

Différentielle de l’énergie libre : Ḟ dt = dF

(4.51)

Approche de l’équilibre : système et réservoir de chaleur

1 Evolution : déformation interne irréversible

(température et volume constants) (4.51)

2 Equilibre : minimum de l’énergie libre

(température et volume constants) (4.51)

Si un système rigide et diatherme est maintenu à température constante
à l’aide d’un réservoir de chaleur, l’état d’équilibre mécanique entre ses
sous-systèmes est celui qui minimise l’énergie libre du système.
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4.5.3 Minimum de l’enthalpie

Réservoir de travail

pext = cste

Système : gaz homogène

1 Fermé : N = N1 +N2 = cste ainsi IC = 0

2 Déformable et diatherme : PW ̸= 0 et IQ ̸= 0

Réservoir de travail : bain mécanique

1 Pression constante : p ext = cste

Paroi : entre les sous-systèmes 1 et 2

1 Imperméable : N1 = cste et N2 = cste

2 Fixe : V1 ̸= cste et V2 ̸= cste (système déformable)

Déformation : isentropique

1 Entropie : S = S1 + S2 = cste
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4.5.3 Minimum de l’enthalpie

Equilibre partiel : équilibre mécanique

(4.52)

Dérivée temporelle de l’enthalpie : (4.29) et (4.52)

Ḣ (S1, S2, p) = U̇
(
S1, S2, V1 (S1, p) , V2 (S2, p)

)
+ p V̇ (S1, S2, p) (4.53)

Dérivées temporelles de l’entropie : réservoir 0 et sous-systèmes 1 et 2

(4.54)

Dérivée temporelle de l’entropie : système

(4.55)

Dérivée temp. de l’entropie : (3.8) et (3.18) dans (4.55) donne (4.56)
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4.5.3 Minimum de l’enthalpie

Courant d’entropie : (2.3) et (4.56)

(4.57)

Equation de bilan d’entropie : Ṡ = 0 (2.3)

(4.58)

Courant de chaleur : du réservoir 0 vers les sous-systèmes 1 et 2

(4.59)

Températures : au voisinage de l’équilibre thermique où ∆T ≪ T

(4.60)

Courant d’entropie : approximation : température moyenne T (4.57)

(4.61)
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4.5.3 Minimum de l’enthalpie

Courant d’entropie :

IS ≃ IQ
T

⩽ 0 (4.61)

Courant de chaleur : (4.61)

(4.62)

Dérivée temporelle de l’enthalpie : (4.53) écriture allégée

(4.63)

Déformation : (2.30)

PW = − p V̇ (4.64)

Premier principe : avec IC = 0

U̇ = PW + IQ (1.45)

Dérivée temporelle de l’enthalpie : (1.45), (2.30) et (4.62) dans (4.63)

(4.65)
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4.5.3 Minimum de l’enthalpie

Réservoir de travail

pext = cste

Différentielle de l’enthalpie :

(4.66)

Approche de l’équilibre : système et réservoir de travail
1 Evolution : transfert interne irréversible de chaleur

(entropie et pression constantes) (4.66)

2 Equilibre : minimum de l’enthalpie

(entropie et pression constantes) (4.66)

Si un système déformable et diatherme est maintenu à pression constante
à l’aide d’un réservoir de travail, et que les transferts de chaleur entre les
sous-systèmes et avec le réservoir de travail ont lieu à entropie constante,
l’état d’équilibre thermique entre ses sous-systèmes est celui qui minimise
l’enthalpie du système.

Dr. Sylvain Bréchet 4 Potentiels thermodynamiques 37 / 84



4.5.4 Minimum de l’énergie libre de Gibbs

Réservoir de chaleur
    et de travail

Text = cste pext = cste

Système : gaz homogène

1 Fermé : N = N1 +N2 = cste ainsi IC = 0

2 Déformable et diatherme : PW ̸= 0 et IQ ̸= 0

Réservoir de chaleur et de travail :

1 Température constante : T ext = cste

2 Pression constante : p ext = cste

Paroi : entre les sous-systèmes 1 et 2

1 Perméable : N1 ̸= cste et N2 ̸= cste

2 Fixe : V1 ̸= cste et V2 ̸= cste (système déformable)
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4.5.4 Minimum de l’énergie libre de Gibbs

Equilibre partiel : équilibre thermique et mécanique

Dérivée temporelle de l’énergie libre de Gibbs : (4.37)

Ġ (T, p,N1, N2) =

U̇
(
S1 (T, p,N1) , S2 (T, p,N2) , V1 (T, p,N1) , V2 (T, p,N2) , N1, N2

)
− T Ṡ (T, p,N1, N2) + p V̇ (T, p,N1, N2) (4.67)

Dérivée temporelle de l’énergie libre de Gibbs : écriture allégée

(4.68)

Déformation : (2.30)

PW = − p V̇ (4.64)

Premier principe : (4.64)

U̇ = IQ + PW = IQ − p V̇ (1.45)
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4.5.4 Minimum de l’énergie libre de Gibbs

Dérivée temporelle de l’énergie libre de Gibbs : écriture allégée

Ġ = U̇ − T Ṡ + p V̇ (4.68)

Premier principe : (4.64)

U̇ = IQ + PW = IQ − p V̇ (1.45)

Deuxième principe : puissance dissipée

T Ṡ − IQ = T ΣS ⩾ 0 (2.29)

Dérivée temp. de l’énergie lib. de Gibbs : (1.45) et (2.29) dans (4.68)

(4.69)
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4.5.4 Minimum de l’énergie libre de Gibbs

Réservoir de chaleur
    et de travail

Text = cste pext = cste

Différentielle de l’énergie libre de Gibbs :

(4.70)

Approche de l’équilibre : système et réservoir de chaleur et de travail

1 Evolution : transfert interne irréversible de matière

(température et pression constantes) (4.70)

2 Equilibre : minimum de l’énergie libre de Gibbs

(température et pression constantes) (4.70)

Si un système déformable et diatherme est maintenu à température et
pression constantes à l’aide d’un réservoir de chaleur et de travail, l’état
d’équilibre chimique entre ses sous-systèmes est celui qui minimise
l’énergie libre de Gibbs du système.
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4.6 Processus sur des systèmes couplés à des réservoirs

4.6 Processus sur des systèmes couplés à des réservoirs
4.6.1 Système couplé à un réservoir de travail
4.6.2 Système couplé à un réservoir de chaleur
4.6.3 Système couplé à un réservoir de chaleur et de travail
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4.6.1 Système couplé à un réservoir de travail

Système
Réservoir de travail

pext = cste

Transfert de chaleur : on décrit un transfert de chaleur de
l’environnement vers un système fermé en équilibre avec un réservoir de
travail.

Paroi : diatherme et mobile (entre le système et le réservoir)

Equilibre mécanique : système et réservoir de travail

p = p ext = cste (4.71)

Travail infinitésimal : à pression constante p

δW = − p dV (2.60)
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4.6.1 Système couplé à un réservoir de travail

Chaleur infinitésimale : (1.59), (2.60) et (4.31)

(4.60)

Chaleur : état initial i → état final f

Qi→f =

∫ f

i

δQ (1.62)

Variation d’enthalpie : état initial i → état final f

(4.74)

Transfert de chaleur : (4.60), (1.62) et (4.74)

(4.73)

La chaleur fournie à un système maintenu à pression constante par un
réservoir de travail est égale à la différence d’enthalpie entre l’état initial
et l’état final.

Dr. Sylvain Bréchet 4 Potentiels thermodynamiques 44 / 84



4.6.2 Système couplé à un réservoir de chaleur

Système
Réservoir de chaleur

Text = cste

Déformation : on décrit une compression exercée par l’environnement
sur un système fermé en équilibre avec un réservoir de chaleur.

Paroi : diatherme et fixe (entre le système et le réservoir)

Equilibre thermique : système et réservoir de chaleur

(4.75)

Chaleur infinitésimale : à température constante T

δQ = T dS (2.57)
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4.6.2 Système couplé à un réservoir de chaleur

Travail infinitésimal : (1.59), (2.57) et (4.23)

(4.76)

Travail : état initial i → état final f

Wi→f =

∫ f

i

δW (1.61)

Variation d’énergie libre : état initial i → état final f

(4.78)

Déformation : (4.76), (1.61) et (4.78)

(4.77)

Le travail effectué sur un système maintenu à température constante par
un réservoir de chaleur est égal à la différence d’énergie libre entre l’état
initial et l’état final.
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4.6.3 Système couplé à un réservoir de chaleur et de travail

Système

Réservoir de chaleur
    et de travail

Text = cste pext = cste

Transfert de matière : on décrit un transfert de matière de
l’environnement vers un système ouvert en équilibre avec un réservoir de
de chaleur et de travail.

Paroi : diatherme et mobile (entre le système et le réservoir)

Equilibres thermique et mécanique : système et réservoir

(4.79)

Chaleur infinitésimale et travail infinitésimal : (2.57) et (2.60)

δQ = T dS et δW = − p dV
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4.6.3 Système couplé à un réservoir de chaleur et de travail

Apport énergétique inf. de matière : (1.58), (2.57), (2.60) : (4.80)

Apport énergétique de matière : état initial i → état final f

Ci→f =

∫ f

i

δC (1.63)

Variation d’énergie libre de Gibbs : état initial i → état final f

(4.82)

Transfert de matière : (4.82), (1.63) et (4.80)

(4.81)

L’apport énergétique de matière fournie à un système maintenu à
température et pression constantes par un réservoir de chaleur et de
travail est égal à la différence d’énergie libre de Gibbs entre l’état initial
et l’état final.
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4.7 Relations de Maxwell

4.7 Relations de Maxwell
4.7.1 Théorème de Schwarz
4.7.2 Relations de Maxwell
4.7.3 Dérivées partielles d’une composition de fonctions
4.7.4 Identité cyclique de dérivées partielles
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4.7.1 Théorème de Schwarz

Théorème de Schwarz et relation de Maxwell : l’application du
théorème de Schwarz aux potentiels thermodynamiques donne les
relations de Maxwell entre des grandeurs physiques dérivées des
potentiels thermodynamiques.

Théorème de Schwarz : soit une fonction d’état continue et dérivable
f (x, y) dont les dérivées partielles par rapport aux variables x et y sont
continues et dérivables. On peut permuter l’ordre des dérivées partielles
de f (x, y) (en absence de courbure de l’espace),

(4.83)

Relations de Maxwell : en appliquant le théorème de Schwarz aux
potentiels thermodynamiques U (S, V ), F (T, V ), H (S, p), G (T, p), on
obtient les relations de Maxwell correspondantes.

Pratique : les relations de Maxwell permettent d’exprimer une dérivée
partielle dont le sens physique n’est pas évident en une autre dérivée
partielle dont le sens physique est beaucoup plus intuitif.
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4.7.2 Relations de Maxwell

Théorème de Schwarz : énergie interne U (S, V )

(4.84)

Dérivées partielles : énergie interne (2.17) et (2.16)

∂U (S, V )

∂V
= − p (S, V ) et

∂U (S, V )

∂S
= T (S, V )

Relation de Maxwell : énergie interne U (S, V )

(4.85)

Astuces mnémotechniques :

1 Les variables aux dénominateurs des fractions sont les variables d’état S
et V du potentiel thermodynamique énergie interne U (S, V ).

2 Les grandeurs mécaniques conjuguées p et V sont sur une diagonale et les
grandeurs thermiques conjuguées S et T sont sur l’autre diagonale.
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4.7.2 Relations de Maxwell

Théorème de Schwarz : énergie libre F (T, V )

(4.86)

Dérivées partielles : énergie libre (4.26) et (4.25)

∂F (T, V )

∂V
= − p (T, V ) et

∂F (T, V )

∂T
= −S (T, V )

Relation de Maxwell : énergie libre F (T, V )

(4.87)

Astuces mnémotechniques :

1 Les variables aux dénominateurs des fractions sont les variables d’état T
et V du potentiel thermodynamique énergie libre F (T, V ).

2 Les grandeurs mécaniques conjuguées p et V sont sur une diagonale et les
grandeurs thermiques conjuguées T et S sont sur l’autre diagonale.
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4.7.2 Relations de Maxwell

Théorème de Schwarz : enthalpie H (S, p)

(4.88)

Dérivées partielles : enthalpie (4.34) et (4.33)

∂H (S, p)

∂p
= V (S, p) et

∂H (S, p)

∂S
= T (S, p)

Relation de Maxwell : enthalpie H (S, p)

(4.89)

Astuces mnémotechniques :

1 Les variables aux dénominateurs des fractions sont les variables d’état S
et p du potentiel thermodynamique enthalpie H (S, p).

2 Les grandeurs mécaniques conjuguées V et p sont sur une diagonale et les
grandeurs thermiques conjuguées S et T sont sur l’autre diagonale.
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4.7.2 Relations de Maxwell

Théorème de Schwarz : énergie libre de Gibbs G (T, p)

(4.90)

Dérivées partielles : énergie libre de Gibbs (4.42) et (4.41)

∂G (T, p)

∂p
= V (T, p) et

∂G (T, p)

∂T
= −S (T, p)

Relation de Maxwell : énergie libre de Gibbs G (T, p)

(4.91)

Astuces mnémotechniques :

1 Les variables aux dénominateurs des fractions sont les variables d’état T
et p du potentiel thermodynamique énergie libre de Gibbs G (T, p).

2 Les grandeurs mécaniques conjuguées V et p sont sur une diagonale et les
grandeurs thermiques conjuguées T et S sont sur l’autre diagonale.
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4.7.3 Dérivées partielles d’une composition de fonctions

Composition de fonctions : soit la fonction f
(
x (y, z) , y

)
de la

fonction x (y, z) et des variables y et z.

Différentielle : de la fonction f
(
x (y, z) , y

)

(4.92)

Dérivées totale et partielle : de la fonction f
(
x (y, z) , y

)

(4.93)
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4.7.4 Identité cyclique de dérivées partielles

Fonctions d’état inversibles : x (y, z), y (z, x) et z (x, y)

Différentielles : des fonctions x (y, z), y (z, x) et z (x, y)

(4.94)

(4.94)

(4.94)

Substitution : deuxième et troisième relations dans la première (4.94)

(4.95)

Afin de satisfaire les équations (4.95) pour toute variation infinitésimale,
tous les termes entre parenthèses doivent s’annuler.
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4.7.4 Identité cyclique de dérivées partielles

Inverses des dérivées partielles : les termes entre parenthèses des
membres de gauche de l’équation (4.95) s’annulent.

(4.96)

Identité cyclique des dérivées partielles : les termes entre parenthèses
des membres de droite de l’équation (4.95) s’annulent.

(4.97)
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4.8 Applications

4.8 Applications
4.8.1 Détente de Joule
4.8.2 Détente de Joule-Thomson
4.8.3 Transformation de Legendre mécanique
4.8.4 Equations de Lagrange thermodynamiques
4.8.5 Châıne d’oscillateurs harmoniques amortis couplés
4.8.6 Relations fondamentales pour les grandeurs densitaires
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4.8.1 Détente de Joule

Système isolé : formé de deux compartiments rigides initialement
séparés par une paroi horizontale imperméable et immobile.

Etat initial : le compartiment supérieur est rempli de N moles de gaz à
l’équilibre et le compartiment inférieur est vide.

Etat final : la paroi est brisée par la chute d’une balle et les deux
compartiments sont remplis de gaz à l’équilibre.
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4.8.1 Détente de Joule

Variables d’état : température T et volume V

Différentielle de l’énergie interne : U (S, V )

dU (S, V ) = T dS − p dV (4.1)

Différentielle de l’entropie : fonction d’état S (T, V )

(4.98)

Système isolé : (4.98) dans (4.1) donne (4.99)

Relation de Maxwell : énergie libre F (T, V )

∂S (T, V )

∂V
=

∂p (T, V )

∂T
(4.87)

Capacité thermique : isochore (chapitre 5)

(4.100)
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4.8.1 Détente de Joule

Susbtitution : (4.87) et (4.100) dans (4.99)

(4.101)

Dérivée de la température : T (U, V ) avec dU = 0 : système isolé

(4.102)

Coefficient de Joule : (4.102) dans (4.101)

(4.103)

1 Gaz parfait : le coefficient de Joule est nul.

2 Gaz de van der Waals : le coefficient de Joule n’est pas nul.
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4.8.2 Expérience - Détente de Joule

La détente de Joule est réalisée en faisant passer du gaz, qui se trouve
initialement dans un récipient de volume Vi, dans les deux récipients de
volume final Vf . Le système est rigide et adiabatiquement fermé.

Pour un gaz de van der Waals (chapitre 6) caractérisé par des coefficients
positifs a et b, le coefficient de Joule (6.122) s’écrit,

∂T

∂V
≃ ∆Ti→f

∆Vi→f
=

Tf − Ti

Vf − Vi
= − 1

CV

aN2

ViVf
< 0

En mesurant les températures initiale Ti et finale Tf et les volumes initial
Vi et final Vf , on peut déterminer le coefficient a > 0.
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4.8.2 Détente de Joule-Thomson

p1 p2

Système adiabatiquement fermé : formé d’un cylindre dans lequel
coulissent deux pistons séparés par une paroi fixe et perméable.

Evolution : le cylindre contient N moles d’un gaz passant à travers la
membrane sous l’effet des pistons qui assurent respectivement des
pressions constantes p1 et p2 dans les sous-systèmes 1 et 2.

Premier principe : travail réversible des pistons : dU = δW

(4.104)

Pressions constantes : (4.104)

(4.105)

Différentielles de l’enthalpie : (4.29) dans (4.105)

(4.106)
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4.8.2 Détente de Joule-Thomson

Variables d’état : température T et pression p

Différentielle de l’enthalpie : (4.105) et (4.106)

(4.107)

Différentielle de l’enthalpie : H (S, p)

dH (S, p) = T dS + V dp (4.32)

Différentielle de l’entropie : fonction d’état S (T, p)

Evolution isenthalpique : (4.32) donne (4.108)
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4.8.2 Détente de Joule-Thomson

Relation de Maxwell : énergie libre de Gibbs G (T, p)

∂S (T, p)

∂p
= − ∂V (T, p)

∂T
(4.91)

Capacité thermique : isobare

(4.109)

Susbtitution : (4.91) et (4.109) dans (4.108)

(4.110)

Dérivée de la température : T (H, p) avec dH = 0

(4.111)
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4.8.2 Détente de Joule-Thomson

p1 p2

Coefficient de Joule-Thomson : (4.111) dans (4.110)

(4.112)

1 Gaz parfait : le coefficient de Joule-Thomson est nul.

p V = NRT

2 Gaz de van der Waals : le coefficient de Joule-Thomson n’est pas nul.(
p+

N2 a

V 2

)
(V − N b) = NRT
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4.8.2 Expérience - Détente de Joule-Thomson

La détente de Joule-Thomson est réalisée en faisant passer du gaz à
travers une membrane perméable dans un cylindre adiabatiquement
fermé en maintenant les pressions initiale pi et finale pf constantes et
différentes.

Pour un gaz de van der Waals caractérisé par des coefficients positifs a et
b, le coefficient de Joule-Thomson (6.149) s’écrit,

∂T

∂p
≃ ∆Ti→f

∆pi→f
=

Tf − Ti

pf − pi
≃ 1

Cp

(
4 aN

R (Ti + Tf )
− N b

)
En mesurant les températures initiale Ti et finale Tf et les pressions
initiale pi et finale pf , on peut déterminer les coefficients a et b.
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4.8.3 Transformation de Legendre mécanique

Système : n points matériels identiques de masse m

Variables d’état : positions, quantités de mouvement

q1, .., q3n, p1, .., p3n

Energie :

(4.113)

Vitesses : (4.113)

(4.114)

Lagrangien : opposé de la transformée de Legendre de l’énergie
E (q1, . . . , q3n, p1, . . . , p3n) par rapport à tous les pi

(4.115)
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4.8.3 Transformation de Legendre mécanique

Lagrangien : (4.113) et (4.114) dans (4.115)

(4.116)

Quantités de mouvement : (4.116)

(4.117)

Courbures : dérivées secondes (4.113) et (4.116)

(4.118)

Pour que la courbure du lagrangien ait le même signe que la courbure de
l’énergie, le lagrangien L est défini comme l’opposé de la transformée de
Legendre de l’énergie E, car cette transformation est une application
bijective qui change le signe de sa courbure.
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4.8.4 Equations de Lagrange thermodynamiques

Système : n points matériels identiques de masse m dans un fluide
visqueux homogène

1 Fermé : IC = 0

2 Diatherme : IQ ̸= 0

3 Déformable : PW ̸= 0

4 Centre de masse au repos : P ext = 0

Variables d’état : entropie, volume, positions, quantités de mouvement

S, V, q1, .., q3n, p1, .., p3n
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4.8.4 Equations de Lagrange thermodynamiques

Energie : (4.121)

Dérivée temporelle de l’énergie :

(4.122)

Quantités de mouvement :

(4.123)

Dérivée temporelle de l’énergie : (4.123) dans (4.122)

(4.124)

Dérivée temporelle de l’énergie : (2.16) et (2.17) dans (4.124)

(4.125)
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4.8.4 Equations de Lagrange thermodynamiques

Premier principe : (2.30) dans (1.17)

(4.126)

Equation d’évolution : (4.125) et (4.126)

(4.127)

Deuxième principe : (4.127) et (2.29) dans (2.1)

(4.128)

Source d’entropie : forces de frottement visqueux F fr
i (modélisation)

(4.129)

Equations du mouvement : (4.128) et (4.129)

(4.130)
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4.8.4 Equations de Lagrange thermodynamiques

Source d’entropie : forces de frottement visqueux F fr
i

ΣS = − 1

T

3n∑
i=1

F fr
i q̇i ⩾ 0 (4.129)

Deuxième principe : forme quadratique des q̇i au voisinage de l’équilibre

(4.131)

Forces de frottement interne : (4.129) et (4.131)

(4.132)

Equations du mouvement :

F fr
i = m q̈i +

∂U

∂qi
où i = 1, .., 3n (4.130)

Equations du mouvement : (4.132) dans (4.130)

(4.133)
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4.8.4 Equations de Lagrange thermodynamiques

Equations du mouvement :

m q̈i +
∂U

∂qi
= −λ q̇i (4.133)

Lagrangien :

(4.134)

Dérivées du Lagrangien :

(4.135)

Equations de Lagrange généralisées : (4.139) dans (4.137)

(4.136)

Les équations de Lagrange thermodynamiques sont constituées de 3n
équations de Lagrange généralisées (4.136) couplées à la source
d’entropie (4.131) par les vitesses q̇i.
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4.8.5 Châıne d’oscillateurs harmoniques amortis couplés

k m k k km m

Système isolé : châıne de n+ 1 oscillateurs harmoniques amortis
couplés identiques (n points matériels) de masse m, de rigidité k et de
longueur au repos ℓ0 dans un fluide visqueux.

1 Isolé : PW = IQ = IC = 0

2 Centre de masse au repos : P ext = 0

Variables d’état : entropie, positions, vitesses

S, x1, .., xn, ẋ1, .., ẋn

Energie interne : énergie potentielle élastique et de frottement

(4.137)

où x0 = 0 et xn+1 = (n+ 1) ℓ0.
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4.8.5 Châıne d’oscillateurs harmoniques amortis couplés

Lagrangien :

(4.138)

Equations de Lagrange généralisées : (1.136)

(4.139)

Dérivées du Lagrangien :

(4.140)

Equations du mouvement : (4.140) dans (4.139)

(4.141)
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4.8.5 Châıne d’oscillateurs harmoniques amortis couplés

Equations de Lagrange généralisées :

mẍi + λ ẋi − k (xi+1 − 2xi + xi−1) = 0 (4.141)

Equation thermique : (4.131)

(4.142)

1 Evolution : processus irréversible - dissipation

2 Equilibre : maximum de l’entropie

Equilibre : (4.143) où ẋi = 0 et ẍi = 0
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4.8.6 Relations fondamentales pour les grandeurs densitaires

Grandeurs densitaires : grandeurs extensives par unité de volume ou de
masse.

Densités volumiques :

(4.144)

Relation de Gibbs : (4.1) divisée par le volume V

(4.145)

Différentielles des densités volumiques :

(4.146)
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4.8.6 Relations fondamentales pour les grandeurs densitaires

Relation de Gibbs : combinaison linéaire de (4.146) dans (4.145) donne
(4.147)

Relation d’Euler :

U = T S − p V +
r∑

A=1

µA NA (4.7)

Relation de Gibbs densitaire volumique : (4.7) dans (4.147)

(4.148)

Relation d’Euler : (4.7) divisée par le volume V

(4.149)
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4.8.6 Relations fondamentales pour les grandeurs densitaires

Relation d’Euler densitaire volumique : (4.144) dans (4.149)

(4.150)

Différentielle de la relation d’Euler densitaire volumique :

(4.151)

Relation de Gibbs densitaire volumique :

du = T ds+
r∑

A=1

µA dnA (4.148)

Rel. de Gibbs-Duhem densitaire volumique : (4.148) dans (4.151)

(4.152)
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4.8.6 Relations fondamentales pour les grandeurs densitaires

Densités massiques :

(4.153)

Masse molaire : masse mA d’une mole de substance A

Potentiel chimique massique et concentration massique :

(4.154)

Relation de Gibbs : (4.1) divisée par la masse M

(4.155)
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4.8.6 Relations fondamentales pour les grandeurs densitaires

Différentielles des densités massiques :

(4.156)

Relation de Gibbs : combinaison linéaire de (4.156) dans (4.155)

(4.157)
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4.8.6 Relations fondamentales pour les grandeurs densitaires

Relation d’Euler :

U = T S − p V +
r∑

A=1

µA NA (4.7)

Relation de Gibbs densitaire massique : (4.7) dans (4.157)

(4.158)

Relation d’Euler : (4.7) divisée par la masse M

(4.159)

Relation d’Euler densitaire massique : (4.154) et (4.155) dans (4.159)

(4.160)
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4.8.6 Relations fondamentales pour les grandeurs densitaires

Relation d’Euler densitaire massique :

u∗ = T s∗ − p v∗ +
r∑

A=1

µ∗
A c∗A (4.160)

Différentielle de la relation d’Euler densitaire massique :

(4.161)

Relation de Gibbs densitaire massique :

du∗ = T ds∗ − p dv∗ +
r∑

A=1

µ∗
A dc∗A (4.158)

Rel. de Gibbs-Duhem densitaire massique : (4.158) dans (4.161)

(4.162)

Dr. Sylvain Bréchet 4 Potentiels thermodynamiques 84 / 84


	4.1 Potentiels en thermodynamique
	4.1.1 Potentiels en thermodynamique

	4.2 Relations fondamentales
	4.2.1 Relation de Gibbs
	4.2.2 Relation d'Euler
	4.2.3 Relation de Gibbs-Duhem

	4.3 Transformations de Legendre
	4.3.1 Fonction d'état d'une variable
	4.3.2 Fonction d'état de plusieurs variables

	4.4 Potentiels thermodynamiques
	4.4.1 Energie interne
	4.4.2 Energie libre
	4.4.3 Enthalpie
	4.4.4 Energie libre de Gibbs

	4.5 Equilibre de sous-systèmes couplés à un réservoir
	4.5.1 Approche vers l'équilibre - système et réservoir
	4.5.2 Minimum de l'énergie libre
	4.5.3 Minimum de l'enthalpie
	4.5.4 Minimum de l'énergie libre de Gibbs

	4.6 Processus sur des systèmes couplés à des réservoirs
	4.6.1 Système couplé à un réservoir de travail
	4.6.2 Système couplé à un réservoir de chaleur
	4.6.3 Système couplé à un réservoir de chaleur et de travail

	4.7 Relations de Maxwell
	4.7.1 Théorème de Schwarz
	4.7.2 Relations de Maxwell
	4.7.3 Dérivées partielles d'une composition de fonctions
	4.7.4 Identité cyclique de dérivées partielles

	4.8 Applications
	4.8.1 Détente de Joule
	4.8.2 Détente de Joule-Thomson
	4.8.3 Transformation de Legendre mécanique
	4.8.4 Equations de Lagrange thermodynamiques
	4.8.5 Chaîne d'oscillateurs harmoniques amortis couplés
	4.8.6 Relations fondamentales pour les grandeurs densitaires


